How Aura transformed air quality research with a look forward to TROPOMI and geostationary satellites ### **Daniel Jacob** ## I couldn't say it better... ### TES: first direct retrievals for global tropospheric ozone shows mid-latitude pollution belt and global influence from tropical fires, tests global models ## Increasing Chinese influence on tropospheric ozone seen by TES Zhang et al. [2006], Verstraeten et al. [2014] ## Reversal of Chinese emission trends observed by OMI ## Using OMI HCHO/NO₂ ratios to diagnose ozone production regime Ozone production can be limited by either NO_x or VOCs Ozone production in urban areas tends to be VOC-limited and VOC emissions have not been decreasing. # 2005-2011 decrease of US NO_x emissions demonstrated by OMI observations # 2005-2011 decrease of US NO_x emissions demonstrated by OMI observations 30% decrease in tropospheric NO_2 from 2005 to 2011, consistent with EPA-reported NO_x emission trends Russell et al. [2012] # US NO_x emissions have continued to decrease since 2011 according to EPA... but OMI tropospheric NO₂ column observations suggest otherwise! EPA National Emission Inventory (NEI): 53% sustained decrease of NO_x emissions over 2005-2017 *EPA*, 2018 OMI NO₂ columns over CONUS, 2005-2016: flat after 2011 Jiang et al., 2018 What's going on? Stay tuned for Rachel Silvern, this afternoon # Formaldehyde over US demonstrates abundance of biogenic VOCs... ...and a significant cancer risk 6000-12000 people in US to develop cancer over their lifetimes from HCHO exposure ## New air pollution frontier: India OMI reveals rapid growth in SO₂ emissions from coal use ### TROPOMI instrument launched in October 2017: Global daily mapping of NO₂, formaldehyde, ozone, SO₂, CO, methane for 3.5x7 km² nadir pixels #### TROPOMI instrument launched in October 2017: Global daily mapping of NO₂, formaldehyde, ozone, SO₂, CO, methane for 3.5x7 km² or 7x7 km² nadir pixels ### Geostationary constellation for air quality (2020-2022 launches) - KARI GEMS: Feb-Mar 2020 launch - 300-500 nm spectral range - 3.5x8 km² pixels - NASA TEMPO: 2022 launch - 290-490 + 540-740 nm (for boundary layer ozone and SIF) - 2x5 km² pixels - ESA Sentinel-4: 2021 launch - 315-500 + 750-775 nm - 8x8 km² pixels # OMI observed post-2012 reversal of NO_x emission trend in China China Governmental Clean Air Action initiated strong emission controls starting in 2013 ### NO_v trends over China - Confirms trends in MEIC bottom-up Chinese inventory - Steeper OMI NO₂ trends in winter can be attributed to chemical feedbacks [presentation by Viral Shah this afternoon] # OMI observes dramatic turnaround of Chinese SO₂ emissions Mean OMI SO₂ over China, 2006-2017 70% decrease of SO₂ emissions over 2013-2017 period of Clean Air Action #### OMI trend over Beijing region, 2006-2017